丰都县智愚河畔环境技术工作室

智愚河畔环境技术工作室

当前位置: 首页 >> 科学普及

高科技发展导读 1.

[2024-11-05] 科学普及 165

【高科技发展导读 1.】

        (人工智能(AI)聚焦十大领域①)

  人工智能(AI)作为当今科技革命的重要驱动力,正以前所未有的速度改变着我们的生活和工作方式。从智能制造到智慧城市,从医疗健康到金融服务,人工智能的应用无处不在,其影响力深远而广泛。然而,我们也面临着新的挑战和机遇。如何把握人工智能的发展方向,如何推动技术创新与产业升级,如何确保人工智能技术的可持续发展,这些问题都需要我们深入思考和探讨。

  这里将分期转摘人工智能(AI)十大前沿技术趋势展望(转引自科技导报(2005.10.25))。人工智能的发展正以前所未有的速度推进着科技的进步和社会的变革。这里从①AI共性技术、②大规模预训练模型、③具身智能、④生成式人工智能四大方面讨论十个前沿领域,讨论AI技术领域充满了无限的可能和潜力。这些技术的发展不仅将为我们带来更加便捷、高效的生活方式,还将推动各行各业的创新和发展。

1.AI共性基础技术

     (1)小数据与优质数据的崛起

 研究以数据为中心的AI系统,其核心在于构建AI系统所需的数据。当今时代大数据的重要性已经不言而喻。然而大量无效数据的存在,不仅消耗了大量计算资源,也对模型可靠训练带来极大的挑战。在此背景下,小数据和优质数据的价值越来越重要。小数据更注重数据的精度和相关性,优质数据则通过严格的筛选、清洗和标注工具剔除了噪声和不相关信息,从本质上减少人工智能算法对数据的依赖和不确定性,增强网络可靠性。建设多样性的数据集不仅能够从理论基础上支撑不同技术路线的AI发展,还为解决通用人工智能的瓶颈问题提供新的可能。

     (2)人机对齐:构建可信赖的AI系统

 除了输入的训练数据集质量,AI系统的可靠性还体现在输出结果的可执行性上。只有AI的输出结果与人类价值观相符,才能确保AI模型的能力和行为与人类意图保持一致。仅依靠数据和算法并不足以实现人机对齐,需要将人类的价值观和伦理道德转化为强化学习奖励函数。这意味着在设计奖励机制时,不仅要考虑任务的效率、效益和效果,还需要考虑行为是否符合人类的伦理标准。例如,在设计一个自动驾驶系统的奖励函数时,除了行驶速度和安全性,还应加入对交通规则的遵守、对行人和其他车辆的礼让等伦理因素的权重,从而引导模型学习到更加符合人类期望的行为。

     (3)AI法则:确保合规性与安全性

 当前AI系统的合规性、安全性和伦理问题愈发突出,建立一个类似宪法上位法则的AI监督模型框架尤为必要。其主要目的是通过制定明确的标准和规范,确保所有AI系统在开发和使用过程中遵循既定的原则,从而减少AI在制度没有确定的情况下被过度使用所带来的风险。例如,在设计阶段,必须考虑系统在对人的监控、对价值观的引导,以及在军事领域的过度使用等方面可能带来的社会影响;在训练阶段,所使用的数据和算法须确保不会侵犯用户隐私或造成不公平的结果;在部署阶段,还需要持续监控AI系统运行状态,及时发现并修复任何潜在的风险和漏洞。

      (4)可解释性模型:让AI更透明可信

  解释性方法旨在让AI模型的决策过程和结果可被形式化描述,以便人类能够理解、评估、监督和干预模型的行为,实现算法可靠性和有效性的平衡。在保障有效性的前提下,提高可解释性,有助于减少对公共资源的消耗,增强用户对AI系统的信任度,并促进其在关键领域的应用。例如在医疗健康领域,一个具有高可解释性的AI诊断系统能够让医生更容易理解其判断依据,减少不必要的检查和治疗程序;在金融服务领域,可解释的AI模型可以更清晰地给出其风险评估和投资策略,降低风险。增强AI系统的可解释性还有助于在出现问题时进行调试和修正,确保系统的持续改进和优化。



                丰都智愚河畔环境技术工作室  转摘自《科技导报》(2024.10.25)

 




标签: FETS
发表评论:
验证码:
评论记录:
首页
一键拨号
关于我们